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It is proved that for any Hamiltonian in a separable Hilbert space, having a non-
empty absolutely continuous spectrum, there exists a time operator densely defined
in the subspace of absolutely continuous vectors. This result is obtained by using the
Carbó-Dorca parameterized vector spaces and the spectral representation theorem for
self-adjoint operators in Hilbert spaces. The restriction of the Hamiltonian to the abso-
lutely continuous subspace and its time operator are incompatible. These results bring
a completely new light on the energy–time uncertainty relations. The possible physical
interpretations and related facts are also examined.
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1. Preliminaries

This work is about the old and quite controversial problems of the energy–
time uncertainty relations (ETUR) and the existence of time operators as well
defined mathematical objects with an acceptable physical interpretation. Before
beginning the presentation of the problem, it would be useful to know sev-
eral authorized opinions about ETUR. For instance, in a private communication
(1983), Hooker advanced the opinion that “the energy–time relations are quite
mysterious in quantum mechanics” [1]. Aharonov and Bohm [2, 3] and later
Busch [4] concluded that “the interpretations of the ETUR are in fact untena-
ble”. In the same paper Busch also affirms that “today one finds physicists claim-
ing that there is no energy–time uncertainty relation at all”.

Closely related with ETUR is the problem of the existence of a time-
operator as a physical observable. It can be hypothesized, taking into account
the ETUR, that the time operator should be the companion of Hamiltonians
in such relationships. Starting with this hypothesis Pauli proves that it is impos-
sible to have a time operator corresponding to “universal time”. His argument
uses the assumption that the spectrum of such an operator must be the set R

of all real numbers (here the analogy with the “time-parameter” is obvious). On
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the other hand, as a time operator is the companion of energy in an uncer-
tainty-type relationship, its spectrum has to coincide with the spectrum of any
Hamiltonian. In conclusion, the spectrum of any Hamiltonian must be R, which
is obviously absurd. One can use such Pauli reduction to absurd as a non-exis-
tence proof of ETUR. For discussing this and other related problems, several
mathematical notions will be introduced and will be also used in what follows.

By H will be denoted an infinite-dimensional separable Hilbert space,
whose normed vectors represent the pure states of the attached systems. For
arbitrarily given x, y ∈ H 〈x, y〉 , ‖x‖ = 〈x, x〉1/2 , respectively represent the inner
product and the norm of the specified vectors. The symbols C, N denote the
sets of complex and natural numbers, respectively. Returning to the initial prob-
lem, one can remember that the most general uncertainty relationship involv-
ing the observables/self-adjoint operators A and B in the Robertson–Schrödinger
version is:

�xA�xB ≥ 1
2

∣
∣
∣

√〈[A, B]〉x
∣
∣
∣ , (1)

where 〈C〉x = 〈x, Cx〉 , �xC =
√

〈

C2
〉

x
− 〈C〉2

x are the mean and the standard devi-
ation of the observable C in the state x. Since, as Pauli concluded, a time operator
does not exist, the usually called ETUR is simply a relationship between two quanti-
ties, which has nothing to do with the “true” uncertainty relationships involving two
observables.

Hilgevoord [5] presented a completely different but quite natural point of
view on this problem; affirming, in essence, that time operators exist, but they
are to be defined for each dynamical system separately. In Hilgevoord’s frame-
work it is also admitted that not any dynamical system possess a time operator.
In this work Hilgevoord’s arguments will be not be further discussed, because
they have not very much in common with the present development. But it is
important to note that the here advanced arguments arrive to the same general
idea, although following substantially different ways.

The present approach is based and at the same time justified by some prelimi-
nary observations on uncertainty relationships. Starting with the general relation (1)
it will be only discussed the case of the observables whose spectrum has a discrete
part (the set of all eigenvalues) and an absolutely continuous part (these notions will
be fully explained in Paragraph 2). In fact, the most physically interesting Hamilto-
nians are associated to this situation. It is very important to understand that, besides
some specific cases, the general relationship has not exactly the physical signifi-
cance of position–momentum uncertainty relations. Indeed, first of all the position–
momentum expresses a strong correlation between two observables, each of them
being of fundamental importance in order to describe a large class of quantum sys-
tems. Referring to one-dimensional systems only (considering more than one dimen-
sion is irrelevant to our discussion) one can see that the position observable q and
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the momentum p of a particle are, each of them, complete systems of observables in
Dirac sense [6]. This means that any state of a “one-dimensional particle” is a square
integrable function of q or p, but not of both. It is well known that this fact is, in some
extent, a consequence of the uncertainty principle, which, roughly speaking, asserts
that, independently of a one-particle system state, the position and the momentum have
not simultaneously determined values. In fact, they have not determined values at all.
Indeed, from the statistical nature of the standard quantum mechanical formalism,
one knows that in any arbitrarily chosen state of a particle, the probability that the
particle has a well-defined position or momentum is zero. The mathematical form of
the uncertainty principle is the relation (1) for the pair (q, p). There are some addi-
tional mathematical properties of the observables q and p, which are important for
the present development. One of the most significant can be stated as the ranges
of the spectral measures of the observables p and q are maximal non-atomic Bool-
ean algebras of orthogonal projectors in the L2-Hilbert space of one-particle wave
functions. In the usual quantum-mechanical language this means that the standard
deviations of q and p in any state possess non-vanishing values. Or, equivalently, q

and p have not eigenvalues. That shows why the relation (1) for the pair (q, p) is so
important: it reflects a strong correlation between experimentally obtained values of q
and p in any arbitrarily given state. However, this may be not the case when other pairs
of observables are considered. For instance, if in equation (1) x is an eigenstate of A,
then �xA = 0 and no information is obtained about �xB. Such observations suggest
that the pair (q, p) plays a special role among pairs of incompatible observables and
this seems to be related with the fact that they have a purely absolutely continuous
spectrum. It will be proved that this is indeed so. To be more exact, it will be shown
that, in essence, an observable A is involved in a uncertainty-like relation if another
observable B can be described, such that the pair (A, B) is unitarily equivalent – in a
sense, which will become clear below– with the “one-dimensional” pair (q, p). This
fact is crucial for obtaining a meaningful interpretation of ETUR.

The present approach of ETUR was substantially suggested by the Carbó-
Dorca derivation of Heisenberg uncertainty relations in the framework of
parameterized n-dimensional spaces [7,8], introduced by himself. The mathemati-
cal details are very clearly exposed in the mentioned papers, so that here we pres-
ent only some basic notions. A parameterized n-dimensional space is a collection
R of objects X = (x1, . . . , xi, . . . , xn), where xi, 1 ≤ i ≤ n, are complex functions
defined on a domain D of real numbers, which may be called components of X.
It is a vector space with the algebraic operations X+Y and λX, λ ∈ C, defined in
the standard manner. Obviously, this is possible if for any fixed i, 1 ≤ i ≤ n, the
components xi of all X run a complex vector space of functions. In the space R
is defined a so-called real inward scalar product by the formula:

〈X : Y 〉 = 1
2

∑

i

∫

D

[xi(t)
∗yi(t) + yi(t)

∗xi(t)]dt ∈ R.
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The norm generated by this scalar product is, for each component of X, that of a
L2-space of complex functions. The mathematical machinery developed by Carbó-
Dorca in this structure is based on the notion of a triad. If the linear operators τ and
∂t on R are introduced by the formulas: [τX](t) = (tx1(t), . . . , txN(t)), [∂tX](t) =
( d

dt
x1(t), . . . ,

d
dt

xn(t)), then a triad is a triple (X, τX, ∂tX). Finally, it is proved that
for any triad, which satisfies some natural properties, a Heisenberg uncertainty rela-
tionship of the form:

�X(τ)�X(∂t ) ≥ 1
2

(2)

holds, �X(τ) and �X(∂t ) being the standard deviations calculated for the vector
X. In the present work, the operator ∂t will be called the companion of τ in the
parameterized vector space R (in the original Carbó-Dorca papers the notion of
companion has another sense).

The following material is structured in two principal parts. In the first part
of the second section is described the spectral representation theorem in Hil-
bert spaces as a purely mathematical result, because some details of its proof
are necessary for a better understanding of physical considerations. Then it is
shown that this theorem permits the natural construction of a parameterized vec-
tor space for any self-adjoint operator with some convenient properties. In the
third section, ETUR and the time operators are discussed from both mathemat-
ical and physical points of view. In the final section of comments there are pre-
sented some general quantum aspects, which are not directly related with ETUR,
but bring some light on an appropriate understanding of their quantum formal-
ism.

2. Spectral representation theorem

Let A be a self-adjoint operator in the separable Hilbert space H. Accord-
ing to the von Neumann spectral theorem, A is completely determined by its
spectral family {Pλ; λ ∈ R} of orthogonal projectors, in the sense that: 〈x, Ay〉 =
∫

λd 〈x, Pλy〉, ∀x, y, [9]. It is useful to remember that the mentioned spectral
family – as any spectral family – generates on the set B of all Borel subsets of
R a spectral measure, that is: a projector valued σ -additive function P , having
also the properties: P(Ø) = 0, P (R − B) = P(B)⊥ ≡ 1 − P(B), ∀B ∈B, such
that Pλ = P((−∞, λ)), ∀λ. It is obvious that, given x ∈H arbitrarily fixed, the
correspondence: B �→ 〈x, P (B)x〉 ≡ Px(B), defines a real measure on B. If x is
normed, then Px is a probabilistic measure.

Here begins the presentation of the spectral representation theorem. It must
be noted that this exposition uses consistently certain basic developments from
the Gelfand and Vilenkin’s book about generalized functions [10]. The central
notion is the one of a cyclic operator. The operator A is said to be cyclic if
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there exists x ∈H such that the subspace generated by the set {P(B)x; B ∈ B}
is dense in H. The vector x is also called cyclic vector. The following assertion
– named as the spectral representation theorem here – is the basic mathemat-
ical fact in the present development. It can be stated as: if A is a cyclic oper-
ator with the cyclic vector x, then H is isomorphic to the space L2(R, C, Px)

defined on R of complex square integrable functions with respect to Px . If U :
H → L2(R, C, Px) is the corresponding isomorphism and introducing the nota-
tions: AU = UAU−1, xU = Ux, then (AUxU)(λ) = λxU(λ). In other words, the
isomorphism U transforms the operator A into a “coordinate” operator over a
space of square integrable functions of one real variable. Assuming that A has
a purely absolutely continuous spectrum means that the measure Px is abso-
lutely continuous with respect to the Lebesgue measure ν, that is: ν(B) = 0 ⇒
Px(B) = 0. Obviously, L2(R, C, Px) is a one-dimensional parameterized vec-
tor space with the scalar product defined by the measure Px . This fact makes
it different from the Carbó-Dorca’s parameterized spaces, which are defined by
the Lebesgue measure. Therefore, the companion of AU in L2(R, C, Px) has to
be found – it can be denoted by ∂ – such that an uncertainty relation for the
pair (AU, ∂) might be derived by using the procedure from the paper [7]. If that
proof is carefully examined, then it will become clear that the step in which the
measure is consistently involved is the verification of the sequence of equalities:

∫ ∞

−∞
d
dt

(t |x(t)|2)dt = [t |x(t)|2]∞0 = 0. (3)

Clearly, it is valid since the function |x(t)|2 vanishes rapidly enough when t → ∞
since x(t) is in the domain of τ .

Looking for the operator ∂ and taking into account the just mentioned
proof, it becomes clear that it must be a sort of derivative, because the prop-
erties of the derivatives are consistently used. There will be explained first, as
clear as possible, how the operator ∂ may be constructed in a quite natural way.
In order to simplify the notation it can be written: Px ≡ µ. The measure µ

being absolutely continuous with respect to Lebesgue measure, one may formally
write dµ(λ) = ω(λ)dλ – where ω is a positive Lebesgue integrable function –
in the right part it is used the “common” notation for the Lebesgue measure.
Such a relation expresses in fact the well-known Radon–Nicodym theorem. In
other words, it may be written for any Borel subset B ⊆ R the equality: µ(B) =
∫

B
ω(λ)dλ. Taking into account this fact, one can define the function m : R →

R, m(λ) = µ((−∞, λ)), which is increasing and almost everywhere derivable. In
what follows one can consider that m is strictly increasing and derivable (any-
way, it is almost everywhere derivable). Of course, one may envisage more gen-
eral cases, but the purpose here is to discuss the physical part of the problem and
not the possible mathematical difficulties, which might appear in some specific
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cases. So, in the adopted framework it can be written: m′(λ) = ω(λ), where f ′
denotes the derivative of f . Similarly, one has: dm(λ) = ω(λ)dλ.

Now, there are present all necessary tools for defining the operator ∂, i.e.
such an operator, which replaces the derivative in order to obtain the analogue
of the relation (3)in the space L2(R, C, µ). In order to do this, one can define
the derivative of a function with respect to a strictly increasing absolutely con-
tinuous function. Such a function is m, so that one can say that the function f

is derivable in λ with respect to m if

lim
h→0

f (λ + h) − f (λ)

m(λ + h) − m(λ)

exists. Then one can denote this limit by f ′
m(λ) or df

dm
(λ). It is not useless now to

observe that the usual derivative of f is obtained when, instead of m, one takes
the identity of R.

Everything is prepared now for defining the operator ∂; it must be: d
dm

=
1
ω

d
dλ

. Within these conditions the operator is well defined, since m is strictly
increasing, which means that ω is strictly positive. All steps for deriving the
general Heisenberg relationship (from the paper [7]) may be easily reproduced
in L2(R, C, Px) by using this operator. Now it is clear that in L2(R, C, µ) the
equality (3) becomes

∫ ∞

0

d
dm

(λ |y(λ)|2)dµ =
∫ ∞

0

1
ω(λ)

d
dλ

(λ |y(λ)|2)ω(λ)dλ =
[

λ |y(λ)|2
]∞

0
.

For instance, the condition [λ |y(λ)|2]∞0 = 0 is satisfied for all elements of
C∞

0 (R), i.e. for all smooth finitely supported functions. Moreover, since in what
follows only operators whose absolutely continuous spectrum is the interval
[0, ∞) will be considered, we have to admit that, even if the measure µ is finite,
the functions in the domain of AU vanish rapidly enough when λ → ∞. It
results finally that the pair (AU, ∂) satisfies an uncertainty relation formally sim-
ilar with (2).

In order to obtain a general result, that is: the fact that (2) holds for a self-
adjoint operator A, whose spectrum is absolutely continuous but it is not cyclic,
one has to follow a mathematical route, essentially based on the just examined
case of cyclic operators. As it has been already said, the idea of proof emerges
directly from the Gelfand development in reference [10]. However, the mentioned
mathematical development is modified and completed for including all details,
which are essential for completing and clarifying the physical facts one is inter-
ested in. So, consider again A, a self-adjoint operator in H with the domain
D(A). A is supposed to have a purely absolutely continuous spectrum. Besides,
A is not assumed to be cyclic. If x ∈ D(A) ⊆H is an arbitrarily given vector, then
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the smallest closed subspace containing all vectors of the type P(B)x – where B

runs the set of all Borel subsets of R – is called the cyclic subspace generated
by x, and will be denoted by Hx . The subspace Hx is invariant under A and the
restriction Ax of A to Hx is a cyclic operator. In order to prove that Hx is invari-
ant under A, it will be verified first that: Ax ∈ Hx . Suppose that 〈y, P (B)x〉 = 0
for all P(B). From the spectral theorem one knows that: 〈y, Ax〉 = ∫

ad 〈y, Pax〉,
where the integral is taken with respect to the complex measure B �→ 〈y, P (B)x〉.
But this measure is zero for all B, so that: 〈y, Ax〉 = 0. Therefore, Ax is orthog-
onal to any vector belonging to the orthogonal subspace of Hx , which means
that:Ax ∈ Hx . It follows that: AP(B)x = P(B)Ax ∈ Hx for all B, which
proves the required invariance. Further, the subspace Hx cannot be finite dimen-
sional, because in this case Ax would have eigenvectors. Since any eigenvector of
Ax is also an eigenvector of A, one arrives to the absurd conclusion that A has
not a purely continuous spectrum. Further, it is trivially verifiable that Ax has
a purely absolutely continuous spectrum. Indeed, it is sufficiently to see that all
vectors of Hx are absolutely continuous, [11]. Therefore, it becomes clear that, if
µx(B) = 〈x, P (B)x〉, then Hx is isomorphic to L2(R, C, µx). That is, because x

is a cyclic vector for Ax. Here and below it is important to remember that the
elements of the space L2(R, C, η) are not functions, but classes of η-equivalent
functions (f and g are said to be η-equivalent if η({x ∈ R; f (x) �= g(x)}) = 0).
Therefore, it may be considered that a square integrable with respect to η func-
tion vanishes outside the support of η.

Now it will be proved that there exists a finite or denumerable family of
mutually orthogonal cyclic subspaces, whose direct sum is the whole space H. A
simple observation, which will be consistently used, is that the cyclic subspac-
es generated by two orthogonal vectors are orthogonal. The proof is straight-
forward. Consider now an orthonormalized basis BA = {xn; n ∈ N}, contained
in the domain of A and denote by H1 the cyclic subspace generated by x1. If
H�= H1, then suppose xk2 ∈ BA, is the first vector, which do not belongs to H1.
Let H2 be the cyclic subspace generated by the vector:xk2 . Obviously, the cyclic
subspaces H1, H2 are orthogonal. Further, if H�= H1 ⊕ H2 then one can take:
xk3 ∈ BA, as the first vector, which is not in H1 ⊕ H2, naming H3 the cyclic
subspace generated by this vector. It is clear that this process stops after a finite
or countable number of steps. Since the two cases are not essentially different, it
will be further considered that

H = H1 ⊕ H2 ⊕ · · · ⊕ Hn = n⊕
i=1

Hi. (4)

Taking into account the known fact that each Hi is isomorphic to the function space:
L2(R, C, µi) ≡ L2

i , where µi is the measure defined by the corresponding cyclic vec-
tor to Hi . Let Ui : Hi → L2

i be the canonical isomorphism between the specified
subspaces. Given x ∈H, from (4) it results that there exists a unique representation:
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x = x1+x2+· · ·+xn, withxi ∈ Hi, 1 ≤ i ≤ n. Then, the isomorphismU: H→ n⊕
i=1

L2
i

may be defined by the equality: U(x) = (U1(x
1), . . . , Un(x

n)) ≡ (x1
U1

, . . . , xn
Un

). One

shall observe that the space
n⊕

i=1
L2

i is a n-dimensional parameterized space with its

elements being of the form: (f 1, . . . , f n), where f i ∈ L2
i , 1 ≤ i ≤ n. So, one can now

define the operator AU and its derivative/Heisenberg companion ∂ by the formulas:

[AU(x1
U1

, . . . , xn
Un

)](λ) = (λx1
U1

(λ), . . . , λxn
Un

(λ)),

[∂(x1
U1

, . . . , xn
Un

)](λ) = (
d

dm1
x1
U1

(λ), . . . ,
d

dmn

xn
Un

(λ)).

The pair (BA, U) will be called a Heisenberg representation for the operator A

and (AU, ∂), the Heisenberg pair associated to this representation. For such a
pair there exists a generalized Heisenberg relationship, as it has been proved by
Carbó-Dorca [7, 8].

At the end of this paragraph, a technical but very important observation
has to be put forward. It refers to the fact that for a given self-adjoint operator,
there are in general infinitely many Heisenberg representations. To see this, con-
sider the example of a cyclic operator A and an orthonormalized basis contain-
ing a cyclic vector x. Starting the construction of a Heisenberg representation
with x, then the obtained representation will be in a one-dimensional parame-
terized space. Taking first a vector from such a basis, which is not cyclic, then
the resulting representation will be in a parameterized space of more than one
dimension. Presently, the mathematical details of this problem, which are surely
not so simple, will not be discussed. It is important to note there it is natural to
assume that for any physically significant operator/observable, it is possible to con-
struct a physically consistent Heisenberg representation. If the operator is cyclic,
the parameterized space of the representation is one-dimensional, in the other sit-
uations it has more than one dimension. The only general criterion for choosing
a Heisenberg representation is its simplicity. That is why for the case of a cyclic
observable one can assume that the representation, which must be chosen, cor-
responds to a one-dimensional parameterized space.

3. Time operators

The central physical aim of this work is to discuss the existence of energy-
time uncertainty relations where a time observable is directly involved. All nec-
essary mathematical material for this purpose has been already developed in the
preceding section. The general observable A will be replaced with a Hamiltonian
Ĥ . The Hamiltonian Ĥ is assumed to have a point spectrum σp, which may be
empty, and a purely absolutely continuous spectrum σac. It is well known that
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the Hilbert space H may be represented as the direct sum H = Hp ⊕ Hac, where
the two terms of the sum are respectively the subspace generated by the eigen-
vectors and the subspace of absolutely continuous vectors of Ĥ . These subspaces
are orthogonal and invariant underĤ [11]. The most important part of the pres-
ent discussion refers to the situation in which the restriction of Ĥ to the abso-
lutely continuous subspace is cyclic. That is so because all important physical
problems appear in this simple context.

Consider then Ĥ a cyclic Hamiltonian in H, having a purely absolutely con-
tinuous spectrum. Denote by L2

µ the space isomorphic to H, the space of square
integrable functions with respect to the measure µ. The measure µ is generated,
as it is already known, by a cyclic vector and the spectral measure of Ĥ . It is
also known that µ is absolutely continuous with respect to Lebesgue measure,
so that we may write dµ(ε) = ω(ε)dε, where ω(ε) is a positive Lebesgue-integra-
ble function. If U : H → L2

µ is the canonical isomorphism, then U and a cyclic
vector define a Heisenberg representation of Ĥ , in which the companion of ĤU

is the operator: ∂ = 1
ω(ε)

d
dε

. The operator: TU = h
i
∂ is called the time operator

associated to ĤU in this representation (where h is the Planck’s constant and i

the imaginary unit). The pair (ĤU , TU) satisfies the Heisenberg uncertainty rela-
tion in the space L2

µ (obviously, all quantities entering this relation are calculated
with respect to the measure µ). It is not a problem to see that the average val-
ues of TU have time dimensions. Since it is defined by a Hamiltonian, it will be
called Hamiltonian time.

Concerning the essential properties of TU , it is obvious that they are those
of the derivative operator. Besides, if ν denotes the Lebesgue measure, one can
easily verify that: L2

ν ⊆ L2
µ. This results from the following sequence of implica-

tions:

f ∈ L2
ν ⇒

∫

|f |2dµ =
∫

|f |2 ωdν ≤ M

∫

|f |2 dµ < ∞ ⇒ f ∈ L2
µ,

where it has been used the boundedness of the function ω. Therefore, the domain
of the derivative operator is included in L2

µ. Moreover, it is clear enough, with-
out completing the mathematical details, that the time operator can be con-
structed from a purely absolutely continuous operator.

It remains to see what might be the physical interpretation of the so-defined
time operator. For better understanding this quite delicate matter, one can first
consider a one-dimensional particle with p and q as its momentum and coordi-
nate operators, respectively. It is known that the states of such system may be
expressed as normed functions of their position or equally, as normed functions
of their momentum. One can say that p and q are “state variables”. This results
from the fact that both p and q are cyclic operators, so that the state functions
are defined on the spectrum of one of them. In this situation one must remem-
ber that the sets {p} and {q} are, each of them, complete sets of observables in
the Dirac sense. Returning to the pair (ĤU , TU) one can see that it reproduces,
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in some sense, the case of the pair (q, p) for one-dimensional systems. Indeed,
the energy operator is cyclic and appears instead of the coordinate operator.
Analogously, the time operator plays the role of the momentum operator. This
parallel situation leads directly to the fact that the Hamiltonian time is a state
variable, just as the energy associated to its generating Hamiltonian. More pre-
cisely, the states of the system described by the Hamiltonian in question may
appear as functions of the values of the Hamiltonian time. Therefore, the Hamil-
tonian time and the usual “parameter time” are objects with completely different
meanings. Indeed, the parameter time describes the change of states, i.e. what is
commonly called the dynamics of the system. In other words: it is not in any
case a state variable. On the other hand, the Hamiltonian time is closely related
with the states of the system themselves. This means that, in an appropriate rep-
resentation, it becomes a state variable. Nevertheless, being both of them “times”
it is natural to ask if they have something in common. Since the time opera-
tor is an observable, one can talk about its average value in any state (from its
domain). It seems that this value has not a clear enough meaning in terms of
the usual “clock-time”. But, following the common interpretation of average val-
ues, it represents the most probable value of the Hamiltonian time in any given
state. Therefore, the standard deviation of the time operator in a state seems to
be a good candidate for the lifetime of a system in that state. In other words, one
can consider that the standard deviations of the time operator in different states
correspond to the length of some clock-time intervals. This is clearly in accord
with the Heisenberg-type relation between the energy and the Hamiltonian time
in the considered Heisenberg representation. This fact gives also a clear sense to
the ETUR. In the space H the Heisenberg pair is (Ĥ , T̂ ), where T̂ = U−1TUU .

The physical interpretation of the general case, the one associated to a non-
cyclic Hamiltonian, may be easily obtained. Indeed, in this situation the time
operator is obviously the direct sum of the time operators defined for each cyclic
component from the already known representation as a direct sum of H.

4. Final remarks

The conclusion of the present work can be resumed by stating that: for any
Hamiltonian, having an absolutely continuous spectrum, it may be constructed a
time operator, acting in the absolutely continuous subspace. This operator has as
main property the fact that it is the companion of its generating Hamiltonian for an
ETUR, having exactly the formal aspect of the momentum-coordinate uncertainty
relationship. In other words, the integral relation represented by the uncertainty rela-
tion is preserved by the pair (ĤU , TU) in the space L2

µ. On the other hand, this pair
does not preserve the momentum-coordinate commutation relation:
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pq − qp = h

i
I,

where I is the identity operator of the corresponding Hilbert space. Indeed,
if the elementary calculations are performed, then one obtains for any smooth
finitely supported f ∈ L2

µ

[TUĤU − ĤUTU ]f = h

i

1
ω

f.

Remember that dµ = ωdν so that, when µ coincides with the Lebesgue mea-
sure, then ω(ε) ≡ 1 and the Heisenberg commutation relationships are obtained.
Because of that, the transfer of the commutation relations on the space H is
difficult. Indeed, the operator corresponding to multiplication with the function
1
ω

it is not known.
The last remark one can propose is about the discrete/point spectrum of Ĥ .

In the case of a Hamiltonian with purely discrete spectrum, one can not talk
about ETUR in the spirit of the “classical” Heisenberg relations. Plausibly, in
this case one has to choose one of the presentations existing in the literature of
the “false” ETUR. In fact, most of these relationships are derived for wave func-
tions, which may be represented as finite or infinite linear combinations of eigen-
functions of the Hamiltonians.
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